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MURI Facility Summary and collaborative team structure 
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1. Plasma activated low temperature combustion & 
      cool flames (liquid fuels: dimethyl ether, n-heptane) 

   Today’s  Presentation (2014) 

3. In-situ and time accurate multispecies diagnostics in a 
plasma flow reactor (kinetics) 

4. Development of low temperature and high pressure 
plasma combustion mechanism (HP-MECH/plasma) 
(collaboration)  

2. Plasma assisted mild combustion (flame regimes)  
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Thermal effect dominant Kinetic effect 

1. Plasma Activated Low Temperature Combustion and cool flames for liquid hydrocarbon fuels 

>1100 K 
High temperature ( better understood) 

800-1100 K 
Intermediate 

500-800 K 
Low 

Plasma has more kinetic enhancement effect in lower temperature combustion 
However, poorly studied and understood… 

Two-stage ignition charateristics 

Large molecules Fuel fragments Small molecules 

CH2O+X=HCO+XH 



1.1 Plasma activated low temperature combustion of liquid fuels:  
flame regime changes 
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• Fixed O2 molar fraction (XO2 = 0.3) and stretch rate (a = 150 s-1) 

0.3 0.25 0.2 0.175 0.15 0.125 0.1 Plasm
a: on 

Plasm
a: off 

0.0125 0.025 0.0375 0.05 0.0625 0.075 0.1 

Flame Extinction Fuel molar fraction, XF Low 

Fuel molar fraction, XF High Ignition 

1.1 Plasma activated low temperature combustion: n-heptane 



OH-PLIF measurement with varied XF  (n-heptane) 

• Hysteresis (S-Curve, thin and thick reaction zones) 
• Flame: Combustion chemistry dominated regime at high 

temperature and, 
• Ignition: Plasma chemistry dominated regime at low temperature 
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Species measurements in plasma assisted low temperature combustion 

• Probe O.D.: 363 µm 
• Adjust position (Vert. & horiz.) 
• Negligible influence on the flame 

Tomoya Wada 8 

25.4 mm 

2/3/2015 

N-heptane 



near extinction 
 

 (XF = 0.1, XO = 0.3, and a = 150 s-1) 

near ignition 
 

Species distribution near ignition and extinction 

High temperature chemistry Low temperature chemistry 

Providing validation targets 



1.2 Experimental study of plasma assisted diffusional cool flames 

• A heated counterflow burner integrated with vaporization system1 

• n-heptane/nitrogen vs. oxygen/ozone 

• Ozone generator (micro-DBD) produces 2- 5 % of ozone in oxygen 
stream, depending on oxygen flow rate 

• Speciation profiles by using a micro-probe sampling with a micro-GC.2 
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Heated N2 @ 550 K 

N2 @ 300 K 

Stagnation 
plane 

O2 + O3 @ 300 K 

Fuel/N2 @ 550 K 

Pressure 
chamber 

Micro-GC 

Positioning stage 

Ozone generator O2 @ 300 K 

1) S. H. Won, et al., Combust. Flame 157 (2010)  
2) J. K. Lefkowitz, S. H. Won, et al., Proc. Combust. Inst. 34 (2013) 

(b) Normal diffusion flame 

(a) Cool diffusion flame 



Stability diagram of diffusional cool flames 

• Lower Xf, higher a; no flame initiated. 
• Higher Xf, lower a; normal diffusion flames 
• Intermediate Xf and lower a; cool diffusion flames 

• Unstable regime extended 
• As increasing both a and Xf 
• Continuous ignition and 

extinction of cool flames 
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Sensitivity Analysis near Extinction 

Reactions 
• Importance of low temperature 

chemistries 
• RH + OH (~ 15% heat 

production) 
• R + O2 reactions (~40%) 
• QOOH reactions 
• HO2 reactions 

Transport 
• Very sensitive to ozone diffusion 

• O3 + N2 → O2 + O + N2 for initiation 
of radical pool. 

• Thus, fuel diffusion is important as 
well. 

• Strong sensitivity to CH2O 
• Indicator of low temperature 

reactivity1 
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1) S. H. Won et al, Combust. Flame 161 (2014) 475-483 



Speciation Profiles and validation of kinetics 
• Reasonable prediction of acetaldehyde and CH2O 
• Significant over-estimation of C2H4 and CH4 formation 

• Factor of 10. 
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1.3 Plasma assisted premixed cool flames 
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• Lean Flammability Limit:  
                                                 Normal flame vs. cool flame 
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1.3a. Numerical results of Freely propagating  
1D planar cool flames 

• Geometry 
     1D freely propagating flames 
 
• Mixture and Kinetic model 
    Fuel: Dimethyl ether         Oxidizer= (1-x)O2 + xO3,   x=0 - 0.1,    p=1 atm 
    Ozone chemistry & Dimethyl ether model 
       Ombrello, et al., Combustion and Flame, Vol. 157, 2010 
       Zhao et al., Int. J. Chem. Kinet., 40 (2008) 
       Liu et al., Combustion and Flame, 160 (2013) 
 
• Numerical method 
     Modified Chemkin with arc-continuation method 
     Radiation (Optically thin model for CO2, H2O, CO, CH4) 
  Ju et al. JFM, 1997 

SL 
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• Lean Flammability Limit Extension by formation of cool flames 
 

– Lean limit of ϕ = 0.078 w & WO 5% ozone addition  
– Ozone promote cool flames 
– Three flame regimes 
– Cool flames significantly extends the lean burn limit of normal flames 
– Cool flames can have a high flame speed between (~15 cm/s) 

transition 



– Temperature of N2= 600K  
– Temperature of DME/O3/O2=300 K  
– Strain rate=80 s-1  
– Ozone concentration: 3% 
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Experimental observation of premixed cool flames 

Heated N2 @ 600 K 

N2 @ 300 K 

Stagnation 
plane 

DME+ O2 + O3 @ 300 K 

N2 @ 600 K 

Pressure 
chamber 

Micro-GC 

Positioning stage 

Ozone generator O2 @ 300 K 



Premixed Cool Flame stability/regime diagram 

– Three flame regimes found: 
• Unburned mixture past lean 

limit 
• Stable cool flames 
• Transition regime to hot 

flame 

– Lean limit slightly increases 
with strain 

– Width of stable cool flame 
region doubles from 75 s-1 
to 85 s-1 
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Can plasma extend the boundary of mild combustion to lower temperature? 



Mild combustion: co-axial burner 
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3. Preheat burner 
4. Oxidizer flowing sec. 
 
 
 

Center burner (Fuel/N2) 
Plasma reactor (lean mix.) 

Preheated 
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Plasma 

Center burner 
Plasma reactor 

Electrode 

6/27/2014 Tomoya Wada (Princeton University) 20 



MILD combustion w/ and w/o plasma 

• Condition 
• Preheat gas temp.: 1050 K 
• Preheat gas O2: 12% 
• Center burner vel.: 20 m/s 
• Center burner CH4/N2: 10% 
• Plasma reactor vel.: 5 m/s 

 

• Plasma reactor 
• CH4/air ratio: 0% and 3%  

Shorter and wider 
reaction zone 

6/27/2014 Tomoya Wada (Princeton University) 21 



3. In Situ time accurate Mid-IR LAS Diagnostics in plasma/flow reactors (CH4/O2) 

Fig. 1 CH2O time history measurements and modeling of a 300 pulse 
burst at 30 kHz in a stoichiometric CH4/O2/He with 75% dilution.  
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• Stoichiometric, 75% helium 
dilution, 30 kHz pulse rep. freq. 

• Fuel consumption and major 
species agree well with model 

• Disagreement with minor species 
 Intermediate species 



Figure 6: Path flux analysis of fuel consumption integrated over a single pulse period during 
continuous discharge at 30 kHz repetition frequency and steady state temperature conditions. 
Bold species represent those which are measured in Figure 5, red arrows refer to reactions 
from the combustion model, and blue arrows are from the plasma model.  
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In-situ Steady state species measurements 
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CH2O

Key reaction pathways in combustion kinetics  
at high pressure and low temperature: HO2/RO2 

Bretfield et al., JPC letters, 2013. 

blue arrow: Below 700K;  
yellow arrow: 700-1050 K;  
red: above 1050K  

•Strong spectra overlap between HO2, H2O2, RO2 in UV and with H2O in mid-IR 
•Unstable 
•OH detection is limited by linebroading. 



Paramagnetic (radical) species 
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Bremfield et al., 2013, JPC letters, 2013;  Kurimoto et al. 2014 

Experimental results: HO2/OH measurements 
                  

Implication: 
RO2→QOOH→O2QOOH  uncertainty 
HCO+O2=HO2+CO  reaction uncertainty and HCO formation pathway? 

Signal 

DME flow reactor 
model validation 

Sensitivity OH 
HO2 



• Base mechanism: high pressure combustion mechanism: HP-Mech 
                  H2/O2 sub-mechanism:  Burke et al. 2012 (PU and ANL) 
                  CO/CH2O/CH3OH  sub-mechanism:    Labbe et al. 2014 (ANL and PU in CEFRC) 
 
• O3 sub-mechanism:    (PU, Ombrello et al. 2010) 
 O3 decomposition updated (J. Michael, 2013) 
 
• O(1D) reaction pathways  
          O(1D) + Fuels/N2/O2/CO/CO2/H2O/CH2O updated   
 
• O2(singlet) reaction pathways  
 O2(singlet) + Fuels/H/OH/CH3/H2/CH4 updated 
 
• NOx reaction pathways                                         

 Mueller et al., Intl. J. Chem. Kin. (1999), Vol. 31, pp. 705-724 
 Allen et al., Combust. Flame (1997), Vol. 109, pp. 449-470 
 Dean and Bozelli (2000, Gardiner ed.) 

 Klippenstein, Stephen J.; Harding, Lawrence B.; Glarborg, Peter; Miller, James (2011) 

4. High Pressure Mechanism for Plasma Assisted Combustion (HP-Mech/plasma) 
                        H2/H2O2/O3/CO/CH2O/CH3OH/CH4 
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Tests of NOx chemistry in various fuel oxidation systems 
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Collaborating with Richard Yetter, 2014 



 
 

Plasma Modeling Tool Development 

… 
E/N 

Time 
0 

32 

ZDPlasKin CHEMKIN II - SENKIN 
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Conclusions 

1. This MURI program is a very exciting exploration of knowledge frontier. 
 

2. Plasma activated Self-Sustaining diffusion and premixed Cool Flames & mild 
combustion were established  for the first time. Creating exciting 
opportunities in engine and fuel applications. 
 

3. Plasma has a strong kinetic effect in low temperature combustion. A direct 
ignition transition to flame without extinction limit was observed. 

 
4. New diagnostic method (e.g. FRS) for in-situ and time accurate measurements 

of intermediate species and HO2 radicals was developed. Plasma active low 
temperature chemistry via CH2O and RO2 is an important fuel oxidation 
pathway at low temperature. 

 
5. Plasma combustion chemistry remains a big challenge, especially at low 

temperature.  The existing plasma kinetic mechanism is not able to predict 
appropriately the plasma activated low temperature kinetics.   
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5. Future research 

• Low temperature Fuel oxidation kinetics involving O(1D), HO2, O3, 
O2(1Δ) in photolysis and flow reactor (0.1-2 atm)  

• High pressure plasma assisted cool flames (1-10 atm) 

• Plasma combustion kinetic mechanism development 
• Time accurate species and plasma property measurements  





3. Plasma assisted low temperature combustion 
Methane vs. Dimethyl ether (DME) 
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 25.4 mm 

P = 72 Torr 
f = 24 kHz 

 Power ~ 17 W (repetitive pulses) 

Laser beam 
OH, CH2O PLIF 

E = 7500 V/cm, E/N ~ 900 Td Peak Voltage 
= 7.8 KV 



1. Plasma assisted Cool Flames and Mild Combustion:  

(a) Hot diffusion flame 

(b) Cool diffusion flame 

Fig. 1 Plasma assisted normal and cool diffusion flames 

N-heptane 
Normal diffusion flame 
Tf~1900 K 

Cool diffusion flame 
Tf~650 K 

Fig.3 Plasma assisted mild combustion (methane diluted by N2) 

Direct chemi-luminescence image of cool premixed flame by 
ICCD camera for DME/O2/O3 mixture (φ = 0.104) 

Heated N2 

DME/O2/O3 

Fig.2 Plasma assisted cool premixed flame (DME) 



1. Plasma activated Cool Flames: n-heptane-air 

(a) Hot diffusion flame 

(b) Cool diffusion flame 

Fig. 1 Hot and cool  n-heptane  
diffusion flames at the same condition 
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Fig. 2 Ozone (red line) extends the burning liit of cool flames 

Fig. 3 Diagram of hot flame (pink),  stable cool flame (blue), and 
unstable cool flame (white)  

Plasma makes cool flame to 
be observed at 1 atm at 10 
ms timescale. 



2. Plasma assisted flameless (MILD) combustion 
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1. Electrodes 
2. Insulation 
3. Preheat burner 
4. Oxidizer flowing sec. 
 
 
 

• Tested conditions 
– Preheat: 1050 K (including 12% O2) 
– Center burner CH4/N2 and vel.: 10-70% and 5-40 m/s 
– Flame structure change with CH4% in plasma reactor 

0% 

w
/o

 P
la

sm
a 

w
/ P

la
sm

a 

3% 

0% 3% 70% 

Flameless combustion               Regular combustion 

70% 



0

100

200

300

400

500

1

10

100

1000

10000

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Te
m

pe
ra

tu
re

 (K
)

M
ol

e 
Fr

ac
tio

n 
(p

pm
)

Time from last pulse (ms)

C2H2, Exp. C2H2, HP C2H2, USC
CH4, Exp. CH4,HP CH4, USC
H2O, Exp. H2O, HP H2O, USC
T, Exp. T, HP T, USC

Detector 

QCL Laser 

Diluents 

Diluents 
Oxidizer 

Fuel 

Vacuum 
Pump 

Electrode 
Heated 
Vacuum 
Chamber Nanosecond - 

Pulsed 
Power Supply 

Pulsed Signal  
Generator 

Digital Delay  
Generator 

Function  
Generator 

Oscilloscope 
Ge Etalon 

Detector 

Observation 
Window 

Beam 
Splitter 

Collimating 
Lenses 

3. In Situ Mid-IR Diagnostics and kinetic study in plasma/flow reactors  

Fig. 1 Experimental setup of plasma reactor and IR-Herriot cell 

Fig. 2 Comparison of measured and predicted species (H2O, CH4, 
C2H2 formation in C2H4 oxidation: HP-Mech vs. USC Mech 

Fig. 3 OH and HO2 diagnostics in DME flow reactor by using 
Faraday rotational spectroscopy.  Predicted and measured signals. 

In situ diagnostics of H2O, CH4, C2H2, OH, 
and HO2 measurements were conducted by 
using mid-IR absorption and FRS. 



4. Development of high pressure mechanism (HP-Mech) for plasma assisted combustion  
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Fig.1 Comparison of predicted flame speed increase (percentage) by O3 addition in methane/air flame (HP-Mech vs. Konov)  
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